
CHAPTER 4

Learning in PD P Models: The Pattern Associator

In previous chapters we have seen how PDP models can be used as
content-addressable memories and constraint-satisfaction mechanisms.
PDP models are also of interest because of their learning capabilities. They
learn, naturally and incrementally, in the course of processing. In this
chapter, we will begin to explore learning in PDP models. We will consider
two" classical" procedures for learning: the so-called Hebbian, or correla­
tional learning rule, described by Hebb (1949) and before him by William
James (1890), and the error-correcting or "delta" learning rule, as studied
in slightly different forms by Widrow and Hoff (1960) and by Rosenblatt
(1959) .

We will also explore the characteristics of one of the most basic network
architectures that has been widely used in distributed memory modeling
with the Hebb rule and the delta rule. This is the pattern associator. The
pattern associator has a set of input units connected to a set of output units
by a single layer of modifiable connections that are suitable for training
with the Hebb rule and the delta rule. Models of this type have been
extensively studied by James Anderson (see Anderson, 1983, for a more
recent review), Kohonen (1977), and many others; a number of the papers
in the Hinton and Anderson (1981) volume describe models of this type.
The models of past-tense learning and of case-role assignment in PDP:18
and PDP:19 are pattern associators trained with the delta rule. An analysis
of the delta rule in pattern associ ator models is described in PDP:ll.

As these works point out, one-layer pattern associators have several sug­
gestive properties that have made them attractive as models of learning and
memory. They can learn to act as content-addressable memories; they gen­
eralize the responses they make to novel inputs that are similar to the
inputs that they have been trained on; they learn to extract the prototype of
a set of repeated experiences in ways that are very similar to the concept­
learning characteristics seen in human cognitive processes; and they

84 BACKGROUND

degrade gracefully with damage and noise. In this chapter our aim is to
help you develop a basic understanding of the characteristics of these sim­
ple parallel networks. However, it must be noted that these kinds of net­
works have -limitations. In the next chapter we will examine these limita­
tions and consider learning procedures that allow the same positive charac­
teristics of pattern associators to manifest themselves in networks and over­
come one important class of limitations.

We begin this chapter by presenting a basic description of the learning
rules and how they work in training connections coming into a single unit.
We will then apply them to learning in the pattern associator.

BACKGROUND

The Hebb Rule

In Hebb's own formulation, this learning rule was somewhat vaguely
described. He suggested that when two cells fire at the same time, the
strength of the connection between them should be increased. There are a
variety of mathematical formulations of this principle that may be given.
The simplest by far is the following:

.-'

(1)

Here we use E to refer to the value of the learning rate parameter. This
version has been used extensively in the early work of James Anderson
(e.g., Anderson, 1977). If we start from all-zero weights, then expose the
network to a sequence of learning events indexed by I, the value of any
weight at the end of a series of learning events will be

(2)

In studying this rule, we will assume that activations are distributed around
o and that the units in the network have activations that can be set in either
of two ways: They may be clamped to particular values by external inputs or
they may be determined by inputs via their connections to other units in
the network. In the latter case, we will initially focus on the case where the
units are completely linear; that is, on the case in which the activation and
the output of the unit are simply set equal to the net input:

ai = La} wi)'
1

(3)

In this formulation, with the activations distributed around 0, the wi)
assigned by Equation 2 will be proportional to the correlation between the

4. THE PATTERN ASSOCIATOR 85

activations of units i and j; normalizations can be used to preserve this
correlational property when units have mean activations that vary from O.

The correlational character of the Hebbian learning rule is at once the
strength of the procedure and its weakness. It is a strength because these
correlations can sometimes produce useful associative learning; that is, par­
ticular units, when active, will tend to excite other units whose activations
have been correlated with them in the past. It can be a weakness, though,
since correlations between unit activations often are not sufficient to allow
a network to learn even very simple associations' between patterns of activa­
tion.

First let's examine a positive case: a silJ1ple network consisting of two
input units and one output unit (Figure lA). Suppose that we arrange
things so that by means of inputs external to this network we are able to
impose patterns of activation on these units, and suppose that we use the
Hebb rule (Equation 1 above) to train the connections from the two input
units to the output unit. Suppose further that we use the four patterns
shown in Figure IB; that is, we present each pattern, forcing the units to

A B
Input

Output

0

1 2

+

+ +
+

- +
+

C

~~~6304

D
Input

Output

0

123 4

+

-+- +
+

+++ +
+

++
+

--+

E

-1 -1 +2 +1 0
6666

FIGURE 1. Two simple associative networks and the patterns used in training them.



86 BACKGROUND

the correct activation, then we adjust the strengths of the connections
between the units. According to Equation 1, W20 (the weight on the con­
nection to unit 2 from unit 0) will be increased in strength for each pattern
by amount E, which in this case we will set to 1.0. On the other hand, W21

will be increased by amount E in one of the cases (pattern 0) and reduced
by E in the other case, for a net change of O.

As a result of this training, then, this simple network would have
acquired a positive connection weight to unit 2 from unit O. This connec­
tion will now allow unit 0 to make unit 2 take on an activation value corre­
lated with that of unit O. At the same time, the network would have
acquired a null connection from unit 1 to IJnit 2, capturing the fact that the
activation of unit 1 has no predictive relation to the activation of unit 2. In
this way, it is possible to use Hebbian learning to learn associations that
depend on the correlation between activations of units in a network.

Unfortunately, the correlational learning that is possible with a Hebbian
learning rule is a "unitwise" correlation, and sometimes, these unitwise
correlations are not sufficient to learn correct associations between whole
input patterns and appropriate responses. To see that this is so, suppose we
change our network so that there are now four input units and one output
unit, as shown in Figure 1C. And suppose we want to train the connec­
tions in the network so that the output unit takes on the values given in
Figure ID for each of the four input patterns shown there. In this case,
the Hebbian learning procedure will not produce correct results. To see
why, we need to examine the values of the weights (equivalently, the pair­
wise correlations of the activations of each sending unit with the receiving
unit). What we see is that three of the connections end up with 0 weights
because the activation of the corresponding input unit is uncorrelated with
the activation of the output unit. Only one of the input units, unit 2, has a
positive correlation with unit 4 over this set of patterns. This means that
the output unit will make the same response to the first three patterns since
in all three of these cases the third unit is on, and this is the only unit with
a nonzero connection to the output unit.

Before leaving this example, we should note that there are values of the
connection strengths that will do the job. One such set is shown in Figure
IE. The reader can check that this set produces the correct results for each
of the four input patterns by using Equation 3.

Apparently, then, successful learning requires finding connection
strengths that are not proportional to the correlations of activations of the
units. How can this be done?

The Delta Rule

One answer that has occurred to many people over the years is the idea
of using the difference between the desired, or target, activation and the

;.;



4. THE PATTERN ASSOCIATOR 87

obtained activation to drive learning. The idea is to adjust the strengths of
the connections so that they will tend to reduce this difference or error
measure. Because the rule is driven by differences, we have tended to call
it the delta rUle. Others have called it the Widrow-Hoff learning rule or the
least mean square (LMS) rule (Widrow & Hoff, 1960); it is related to the
perceptron convergence procedure of Rosenblatt (I 959).

This learning rule, in its simplest form, can be written

(4)

where e;, the error for unit i, is given by

(5)

the difference between the teaching input to unit i and its obtained activa­
tion.

To see how this rule works, let's use it to train the five-unit network in
Figure lC on the patterns in Figure ID. The training regime is a little dif­
ferent here: For each pattern, we turn the input units on, then we see what
effect they have on the output unit; its activation reflects the effects of the
current connections in the network. (As before we assume the units are
linear.) We compute the difference between the obtained output and the
teaching input (Equation 5). Then, we adjust the strengths of the connec­
tions according to Equation 4. We will follow this procedure as we cycle
through the four patterns several times, and look at the resulting strengths
of the connections as we go. The network is started with initial weights of
O. The results of this process for the first cycle through all four patterns
are shown in the first four rows of Figure 2.

The first time pattern 0 is presented, the response (that is, the obtained
activation of the output unit) is 0, so the error is + 1. This means that the
changes in the weights are proportional to the activations of the input units.
A value of 0.25 was used for the learning rate parameter, so each L1 w is
±0.25. These are added to the existing weights (which are 0), so the
resulting weights are equal to these initial increments. When pattern 1 is
presented, it happens to be uncorrelated with pattern 0, and so again the
obtained output is O. (The output is obtained by summing up the pairwise
products of the inputs on the current trial with the weights obtained at the
end of the preceding trial.) Again the error is + 1, and since all the input
units are on in this case, the change in the weight is +0.25 for each input.
When these increments are added to the original weights, the result is a
value of +0.5 for W04 and W24, and 0 for the other weights. When the next
pattern is presented, these weights produce an output of +1. The error is
therefore - 2, and so relatively larger L1 W terms result. Even so, when the
final pattern is presented, it produces an output of +1 as well. When the
weights are adjusted to take this into account, the weight from input unit 0
is negative and the weight from unit 2 is positive; the other weights are O.

This completes the first sweep through the set of patterns. At this point,



88 BACKGROUND

Ep Pat Input Tgt Output Error Delta w's New values of w's

o 0 1 -1 1 -11 1 0.00 1.001 0.25-0.25 0.25-0.25
o 1 1 1 1 11 1 0.00 1.001 0.25 0.25 0.25 0.25
o 2 1 1 1 -11 -1 1.00 -2.001-0.50-0.50-0.50 0.50
o 3 1 -1--1 11 -1 1.00 -2.001-0.50 0.50 0.50-0.50

tss: 10.00

1 0 1 -1 1 -11 1 0.00 1.001 0.25-0.25 0.25-0.25
1 1 1 1 1 11 1 0.00 1.001 0.25 0.25 0.25 0.25
1 2 1 1 1 -11 -1 1.00 -2.001-0.50-0.50-0.50 0.50
1 3 1 -1 -1 11 -1 0.00 -1.001-0.25 0.25 0.25-0.25

tss: 7.00

3 0 1 -1 1 -11 1 0.25 0.751 0.19-0.19 0.19-0.19
3 1 1 1 1 11 1 0.25 0.751 0.19 0.19 0.19 0.19
3 2 1 1 1 -11 -1 0.13 -1.131-0.28-0.28-0.28 0.28
3 3 1 -1 -1 11 -1 -0.44 -0.561-0.14 0.14 0.14-0.14

tss: 1.52

10 0 1 -1 1 -11 1 0.90 0.101 0.03-0.03 0.03-0.03
10 1 1 1 1 11 1 0.90 0.101 0.03 0.03 0.03 0.03
10 2 1 1 1 -11 -1 -0.85 -0.151-0.04-0.04-0.04 0.04
10 3 1 -1 -1 11 -1 -0.92 -0.081-0.02 0.02 0.02-0.02

tss: 0.05

20 0 1 -1 1 -11 1 0.99 0.011 0.00-0.00 0.00-0.00
20 1 1 1 1 11 1 0.99 0.011 0.00 0.00 0.00 0.00
20 2 1 1 1 -11 -1 -0.99 -0.011-0.00-0.00-0.00 0.00
20 3 1 -1 -1 11 -1 -1.00 -0.001-0.00 0.00 0.00-0.00

t ss: 0.00

FIGURE 2. Learning with the delta rule. See text for explanation.

0.25-0.25 0.25-0.25
0.50 0.00 0.50 0.00
0.00-0.50 0.00 0.50

-0.50 0.00 0.50 0.00

-0.25-0.25 0.75-0.25
0.00 0.00 1.00 0.00

-0.50-0.50 0.50 0.50
-0.75-0.25 0.75 0.25

-0.63-0.63 1.25 0.25
-0.44-0.44 1.44 0.44
-0.72-0.72 1.16 0.72
-0.86-0.58 1.30 0.58

-0.95-0.95 1.90 0.90
-0.92-0.92 1.92 0.92
-0.96-0.96 1.89 0.96
-0.98-0.94 1.91 0.94

-1.00-1.00 1.99 0.99
-1.00-1.00 2.00 1.00
-1.00-1.00 1.99 1.00
-1.00-1.00 1.99 1.00

the values of the weights are far from perfect; if we froze them at these
values, the network would produce 0 output to the first three patterns. It
would produce the correct answer (an output of - 1) only for the last pat­
tern.

The correct set of weights is approached asymptotically if the training
procedure is continued for several more sweeps through the set of patterns.
Each of these sweeps, or training epochs, as we will call them henceforth,
results in a set of weights that is closer to a perfect solution. To get a
measure of the closeness of the approximation to a perfect solution, we can
calculate an error measure for each pattern as that pattern is being pro­
cessed. For each pattern, the error measure is the value of the error
(t - a) squared. This measure is then summed over all patterns to get a
total sum of squares or tss measure. The resulting error measure, shown for
each of the illustrated epochs in Figure 2, gets smaller over epochs, as do
the changes in the strengths of the connections. The weights that result at



4. THE PATTERN ASSOCIATOR 89

the end of 20 epochs of training are very close to the perfect solution
values. With more training, the weights converge to these values.

The error-correcting learning rule, then, is much more powerful than the
Hebb rule. In fact, it can be proven rather easily that the error-correcting
rule will find a set of weights that drives the error as close to 0 as we want
for each and every pattern in the training set, provided such a set of
weights exists. Many proofs of this theorem have been given; a particularly
clear one may be found in Minsky and Papert (1969).

The Linear Predictability Constraint

We have just noted that the delta rule will find a set of weights that
solves a network learning problem, provided such a set of weights exists.
What are the conditions under which such a set actually does exist?

Such a set of weights exists only if for each input-pattern-target-pair the
target can be predicted from a weighted sum, or linear combination, of the
activations of the input units. That is, the set of weights must satisfy

(6)

for output unit i in all patterns p.
This constraint (which we called the linear predictability constraint in

PDP:17) can be overcome by the use of hidden units, but hidden units can­
not be trained using the delta rule as we have described it here because (by
definition) there is no teacher for them. Procedures for training such units
are discussed in Chapter 5.

Up to this point, we have considered the use of the Hebb rule and the
delta rule for training connections coming into a single unit. We now con­
sider how these learning rules produce the characteristics of pattern associa­
tor networks.

THE PATTERN ASSOCIATOR

In a pattern associator, there are two sets of units: input units and output
units. There is also a matrix representing the connections from the input
units to the output units. A pattern associator is really just an extension of
the simple networks we have been considering up to now, in which the
number of output units is greater than one and each input unit has a con­
nection to each output unit. An example of an eight-unit by eight-unit pat­
tern associator is shown in Figure 3.

The pattern associator is a device that learns associations between input
patterns and output patterns. It is interesting because what it learns about



90 THE PATTERN ASSOCIATOR

FIGURE 3. A schematic diagram of an eight-unit pattern associator. An input pattern, an out­
put pattern, and values for the weights that will allow the input to produce the output are
shown. (From PDP:18, p. 227.)

one pattern tends to generalize to other similar patterns. In what follows
we will see how this property arises, first in the simplest possible pattern
associator-a pattern associator consisting of linear units, trained by the
Hebb rule. 1

The Hebb Rule in Pattern Associator Models

To begin, let us consider the effects of training a network with a single
learning trial I, involving an input pattern i, and an output pattern 0,.
Assuming all the weights in the network are initially 0, we can express the
value of each weight as

(7)

Note that we are using the variable ijl to stand for the activation of input
unit j in input pattern i" and we are using Oil to stand for the activation of
output unit i in output pattern 0,. Thus, each weight is just the product of

I Readers who wish to gain a better grasp on the mathematical basis of this class of models
may find it worthwhile to read PDP:9. An in-depth analysis of the delta rule in pattern associ­
ators is in PDP: 11.



4. THE PATTERN ASSOCIATOR 91

the activation of the input unit times the activation of the output unit in
the learning trial I,

Now let u~ present a test input pattern, it, and examine the resulting out­
put pattern it produces. Since the units are linear, the activation of output
unit i when tested with input pattern it is

(8)

Substituting for wij from Equation 7 yields

(9)

Since we are summing with respect to j in this last equation, we can pull
out e and Oil:

(10)

Equation 10 says that the output at the time of test will be proportional to
the output at the time of learning times the sum of the elements of the
input pattern at the time of learning, each multiplied by the corresponding
element of the input pattern at the time of test.

This sum of products of corresponding elements is called the dot product.
It is very important to our analysis because it expresses the similarity of the
two patterns il and it. It is worth noting that we have already encountered
an expression similar to this one in Equation 2. In that case, though, the
quantity was proportional to the correlation of the activations of two units
across an ensemble of patterns. Here, it is proportional to the correlation of
two patterns across an ensemble of units. It is often convenient to normal­
ize the dot product by taking out the effects of the number of elements in
the vectors in question by dividing the dot product by the number of ele­
ments, We will call this quantity the normalized dot product. For patterns
consisting of all +Is and -Is, it corresponds to the correlation between the
two patterns. The normalized dot product has a value of 1 if the patterns
are identical, a value of -1 if they are exactly opposite to each other, and a
value of 0 if the elements of one vector are completely uncorrelated with
the elements of the other.

We can rewrite Equation 10, then, replacing the summed quantity by the
normalized dot product of input pattern il and input pattern it, which we
denote by (iI' it) n:

(II)

where k = ne (n is the number of units). Since Equation 11 applies to all
of the elements of the output pattern 0t, we can write

(12)



92 THE PATTERN ASSOCIATOR

This result is very basic to thinking in terms of patterns since it demon­
strates that what is crucial for the performance of the network is the simi­
larity relations among the input patterns-their correlations-rather than
their specific properties considered as individuals. 2 Thus Equation 12 says
that the output pattern produced by our network at test is a scaled version
of the pattern stored on the learning trial. The magnitude of the pattern is
proportional to the similarity of the learning and test patterns. In particu­
lar, if k = 1 and if the test pattern is identical to the training pattern, then
the output at test will be identical to the output' at learning.

An interesting special case occurs when the normalized dot product
between the learned pattern and the test pattern is O. In this case, the out­
put is 0: There is no response whatever. Patterns that have this property
are called orthogonal or uncorrelated; note that this is not the same as being
opposite or anticorrelated.

To develop intuitions about orthogonality, you should compute the nor­
malized dot products of each of the patterns b, c, d, and e below with pat­
tern a:

a ++--
b

+-+-
c

+--+
d

++++
e

--++

You will see that patterns b, c, and d are all orthogonal to pattern a; in fact,
they are all orthogonal to each other. Pattern e, on the other hand, is not
orthogonal to pattern a, but is anticorrelated with it. Interestingly, it forms
an orthogonal set with patterns b, c, and d. When all the members of a set
of patterns are orthogonal to each other, we call them an orthogonal set.

Now let us consider what happens when an entire ensemble of patterns is
presented during learning. In the Hebbian learning situation, the set of
weights resulting from an ensemble of patterns is just the sum of the sets
of weights resulting from each individual pattern. That is~ after learning
trials on each of a set of input patterns i" each paired with an output pat­
tern 01, the value of each weight will be

(13)

Thus, the output produced by each test pattern is

(14)

2 Technically, performance depends on the similarity relations among the patterns and on their
overall strength or magnitude. However, among vectors of equal strength (e.g., the vectors
consisting of all + 1sand - 1s), only the similarity relations are important.



4. THE PATTERN ASSOCIATOR 93

In words, the output of the network in response to input pattern t is the
sum of the output patterns that occurred during learning, with each
pattern's con_tribution weighted by the similarity of the corresponding input
pattern to the test pattern. Three important facts follow from this:

I. If a test input pattern is orthogonal to all training input patterns,
the output of the network will be 0; there will be no response to an
input pattern that is completely orthogonal to all of the input pat­
terns that occurred during learning.

2. If a test input pattern is similar to one of the learned input patterns
and is uncorrelated with all the others, then the test output will be
a scaled version of the output pattern that was paired with the simi­
lar input pattern during learning. The magnitude of the output will
be proportional to the similarity of the test input pattern to the
learned input pattern.

3. For other test input patterns, the output will always be a blend of
the training outputs, with the contribution of each output pattern
weighted by the similarity of the corresponding input pattern to the
test input pattern.

In the exercises, we will see how these properties lead to several desir­
able features of pattern associator networks, particularly their ability to gen­
eralize based on similarity between test patterns and patterns presented dur­
ing training.

These properties also reflect the limitations of the Hebbian learning rule;
when the input patterns used in training the network do not form an
orthogonal set, it is not in general possible to avoid contamination, or
"cross-talk," between the response that is appropriate to one pattern and the
response that occurs to the others. This accounts for the failure of Hebbian
learning with the second set of training patterns considered in Figure 1.
The reader can check that the input patterns we used in our first training
example in Figure I (which was successful) were orthogonal but that the
patterns used in the second example were not orthogonal.

The Delta Rule in Pattern Associator Models

Once again, the delta rule allows us to overcome the orthogonality limita­
tion imposed by the Hebb rule. For the pattern associator case, the delta
rule for a particular input-target pairi" tl is

(I 5)



94 THE PATTERN ASSOCIATOR

Therefore the weights that result from an ensemble of learning pairs
indexed by I can be written:

(16)

It is interesting to compare this to the Hebb rule. Consider first the case
where each of the learned patterns is orthogonal to every other one and is
presented exactly once during learning. Then o[ will be 0 (a vector of all
zeros) for all learned patterns I, and the above formula reduces to

(17)

In this case, the delta rule produces the same results as the Hebb rule; the
teaching input simply replaces the output pattern from Equation 13. As
long as the patterns remain orthogonal to each other, there will be no
cross-talk between patterns. Learning will proceed independently for each
pattern. There is one difference, however. If we continue learning beyond
a single epoch, the delta rule will stop learning when the weights are such
that they allow the network to produce the target patterns exactly. In the
Hebb rule, the weights will grow linearly with each presentation of the set
of patterns, getting stronger without bound.

In the case where the input patterns i, are not orthogonal, the results of
the two learning procedures are more distinct. In this case, though, we can
observe the following interesting fact: We can read Equation 15 as indicat­
ing that the change in the weights that occurs on a learning trial is storing
an association of the input pattern with the error pattern; that is, we are
adding to each weight an increment that can be thought of as an association
between the error for the output unit and the activation of the input unit.
To see the implications of this, let's examine the effects of a learning trial
with input pattern i[ paired with output pattern t[ on the output produced
by test pattern it. The effect of the change in the weights due to this learn­
ing trial (as given by Equation 15) will be to change the output of some
output unit i by an amount proportional to the error that occurred for that
unit on the learning trial, ej, times the dot product of the learned pattern
with the test pattern:

Here k is again equal to E times the number of input units n. In vector
notation, the change in the output pattern 0t can be expressed as

Thus, the change in the output pattern at test is proportional to the error
vector times the normalized dot product of the input pattern that occurred



4. THE PATTERN ASSOCIATOR 95

during learning and the input pattern that occurred during test. Two facts
follow from this:

1. If the input on the learning trial is identical to the input on the test
trial so that the normalized dot product is 1.0 and if k = 1.0, then
the change in the output pattern will be exactly equal to the error
pattern. Since the error pattern is equal to the difference between
the target and the obtained output on the learning trial, this
amounts to one trial learning of the desired association between the
input pattern on the training trial and the target on this trial.

2. However, if it is different from i, but not completely different so
that (i ,. it) n is not equal to either 1 or 0, then the output produced
by it will be affected by the learning trial. The magnitude of the
effect will be proportional to the magnitude of (i,. it)n.

The second effect-the transfer from learning one pattern to performance
on another-may be either beneficial or interfering. Importantly, for pat­
terns of all + Is and -Is, the transfer is always less than the effect on the
pattern used on the learning trial itself, since the normalized dot product of
two different patterns must be less than the normalized dot product of a
pattern with itself. This fact plays a role in several proofs concerning the
convergence of the delta rule learning procedure (see Kohonen, 1977, and
PDP:ll for further discussion).

The Linear Predictability Constraint Again

Earlier we considered the linear predictability constraint for trammg a
single output unit. Since the pattern associator can be viewed as a collec­
tion of several different output units, the constraint applies to each unit in
the pattern associator. Thus, to master a set of patterns there must exist a
set of weights wij such that

(18)

for all output units i for all target-input pattern pairs p.
Another way of putting this set of constraints that is appropriate for the

pattern associ ator is as follows: An arbitrary output pattern op can be
correctly associated with a particular input pattern ip without ruining associ­
ations between other input-output pairs, only if ip cannot be written as a
linear combination of the other input patterns. A pattern that cannot be
written as a linear combination of a set of other patterns is said to be



96 THE PATTERN ASSOCIA TOR

linearly independent from these other patterns. When all the members of a
set of patterns are linearly independent, we say they form a linearly indepen­

dent set. To.ensure that arbitrary associations to each of a set of input pat­
terns can be learned, the input patterns must form a linearly independent
set.

It is worth noting that the linear independence constraint is primarily a
constraint on the similarity relations among input patterns. If we consider
the input patterns to be representations of environmental inputs, then
whether a set of weights exists that allows us to associate arbitrary
responses with each environmental input depends on the way in which
these environmental inputs are represented as patterns of activation over a
set of input units inside the system. As long as we already have a way of
representing a set of environmental inputs so that they are linearly indepen­
dent, the delta rule will be able to associate any arbitrary responses with
these environmental inputs.

Although this is a serious constraint, it is worth noting that there are
cases in which the response that we need to make to one input pattern can
be predictable from the responses that we make to other patterns with
which they overlap. In these cases, the fact that the pattern associator pro­
duces a response that is a combination of the responses to other patterns
allows it to produce very efficient, often rule-like solutions to the problem
of mapping each of a set of input patterns to the appropriate response. We
will examine this property of pattern associators in the exercises.

Nonlinear Pattern Associators

Not all pattern associator models that have been studied in the literature
make use of the linear activation assumptions we have been using in this
analysis. Several different kinds of nonlinear pattern associators (Le., asso­
ciators in which the output units have nonlinear activation functions) fall
within the general class of pattern associator models. These nonlinearities
have effects on performance, but the basic principles that we have observed
here are preserved even when these nonlinearities are in place. In particu­
lar:

1. Orthogonal inputs are mutually transparent.

2. The learning process converges with the delta rule as long as there
is a set of weights that will solve the learning problem; the non­
linearities that have been tried tend not to have much effect on
which sets of patterns can be learned and which cannot.

3. What is learned about one pattern tends to transfer to others.



4. THE PATTERN ASSOCIATOR 97

THE FAMIL Y OF PATTERN ASSOCIA TOR MODELS

With the above as background, we turn to a brief specification of several
members of the class of pattern associator models that are available through
the pa program. These are all variants on the pattern associator theme.
Each model consists of a set of input units and a set of output units. The
activations of the input units are clamped by externally supplied input pat­
terns. The activations of the output units are determined in a single two­
phase processing cycle. First, the net input to each output unit is computed.
This is the sum of the activations of the input units times the correspond­
ing weights, plus an optional bias term associated with the output unit:

netj = L wi} + bias;.
J

Activation Functions

(19)

(20)

After computing the net input to each output unit, the activation of the
output unit is then determined according to an activation function. Several
variants are available:

• Linear. Here the activation of output unit i is simply equal to the
net input.

• Linear threshold. In this variant, each of the output units is a linear
threshold unit; that is, its activation is set to I if its net input
exceeds 0 and is set to 0 otherwise. Units of this kind were used
by Rosenblatt in his work on the perceptron (1959).

• Stochastic. This is the activation function used in PDP:18 and
PDP:19. Here, the output is set to 1, with a probability p given by
the logistic function:

1
p (0;= 1) = --_I+ e ....,

This is the same activation function used in Boltzmann machines.

• Continuous sigmoid. In this variant, each of the output units takes
on an activation that is nonlinearly related to its input according to
the logistic function:

OJ = 1
1 + enne/;lT

(21)



98 THE FAMILY OF PATTERN ASSOCIATOR MODELS

Note that this is a continuous function that transforms net inputs
between +00 and -00 into real numbers between 0 and 1. This is
the activation function used in the back propagation networks we
will study in Chapter 5.

Learning Assumptions

Two different learning rules are available in the pa program:

• The Hebb rule. Hebbian learning in the pattern associator model
works as follows. Activations of input units are clamped based on
an externally supplied input pattern, and activations of the output
units are clamped to the values given by some externally supplied
target pattern. Learning then occurs by adjusting the strengths of
the connections according to the Hebbian rule:

(22)

• The delta rule. Error-correcting learning in the pattern associator
model works as follows. Activations of input units are clamped to
values determined by an externally supplied input pattern, and
activations of the output units are calculated as described earlier.
The difference between the obtained activation of the output units
and the target activation, as specified in an externally supplied tar­
get pattern, is then used in changing the weights according to the
following formula:

~w = dt - o·)iI} / / J.

The Environment and the Training Epoch

(23)

In the pattern associator models, there is a notion of an environment of
pattern pairs. Each pair consists of an input pattern and a corresponding
output pattern. A training epoch consists of one learning trial on each pat­
tern pair in the environment. On each trial, the input is presented, the
corresponding output is computed, and the weights are updated. Patterns
may be presented in fixed sequential order or in permuted order within
each epoch.



4. THE PATTERN ASSOCIATOR 99

Performance Measures

After processing each pattern, several measures of the output that is pro­
duced and its relation to the target are computed. One of these is the nor­
malized dot product of the output pattern with the target. This measure is
called the ndp. We have already described this measure quantitatively; here
we note that it gives a kind of combined indication of the similarity of two
patterns and their magnitudes. In the cases where this measure is most
useful-where the target is a pattern of + Is and -Is-the magnitude of the
target is fixed and the normalized dot product varies with the similarity of
the output to the target and the magnitude' of the output itself. To uncon­
found these factors, we provide two further measures: the normalized vector
length, or nvl, of the output vector and the vector correlation, or vcor, of the
output vector with the target vector. The nvl measures the magnitude of
the output vector, normalizing for the number of elements in the vector. It
has a value of 1.0 for vectors consisting of all + Is and -Is. The vcor meas­
ures the similarity of the vectors independent of their length; it has a value
of 1.0 for vectors that are perfectly correlated, 0.0 for orthogonal vectors,
and -1.0 for anticorrelated vectors.

Quantitative definitions of vector length and vector correlation are given
in PDP:9 (pp. 376-379).3 For our purposes, it suffices to note the relation
of these three measures. When the target pattern consists of +Is and -Is,
the normalized dot product of the output pattern and the target pattern is
equal to the normalized vector length of the output pattern times the vector
correlation of the output pattern and the target:

ndp = nvl x vcor. (24)

In addition to these measures, we also compute the pattern sum of squares
or pss and the total sum of squares or tss. The pss is the sum over all output
units of the squared error, where the error for each output unit is the
difference between the target and the obtained activation of the unit. This
quantity is computed for each pattern processed. The tss is just the sum
over the pss values computed for each pattern in the training set. These
measures are not very meaningful when learning occurs by the Hebb rule,
but they are meaningful when learning occurs by the delta rule.

3 The normalization of vector length is not discussed in PDP:9. To compute the normalized
vector length, one first divides the magnitude of each element by the square root of the
number of elements in the vector, then computes the length of the resulting vector according
to the formula given in PDP:9, p. 376.



100 IMPLEMENTATION

IMPLEMENT ATION

The pa program implements the pattern associator models in a very
straightforward way. The program is initialized by defining a network, as in
previous chapters. A PA network is assumed to consist of some number of
input units (ninputs) and some number of output units (noutputs). Connec­
tions are allowed from input units to output units only. Each output unit
may also have a bias term, which is treated as though it were a weight from
a unit whose activation was set to 1.0, as in previous chapters. The net­
work specification file defines the number of input units and output units,
as well as the total number of units, and indicates which connections and
bias terms to output units exist and which are modifiable. Usually, each
input unit has a modifiable connection to each output unit, and all of these
are initialized to 0, but other possibilities may be specified in the network
specification file. It is also generally necessary to read in a file specifying
the set of pattern pairs that make up the environment of the model.

Once the program is initialized, learning occurs through calls to a routine
called train. This routine carries out nepochs of training, either in sequential
order (if the routine is called by entering the strain command) or in per­
muted order (if the routine is called by entering the ptrain command). The
routine exits if the total sum of squares measure, tss, is less than some cri­
terion value, ecrit. Here is the train routine:

train(c) char c; {

/* c = 's' for strain, 'p' if ptrain */

for (t = 0; t < nepochs; t++) {
tss = 0.0;
epochno++;

/* make a list of pattern numbers */
for (i = 0; i < npatterns; i++)

used[i] = i;

/* if ptrain, permute list */
if (c == 'p') {

for (i = 0; i < npatterns; i++) {
npat = rnd() * (npatterns - i) + i;
old = used[i];
used[i] = used[npat];
used[npat] = old;

}

for (i = 0; i < npatterns; i++) {

/* set the pattern number, then do trial */
pat no = used[i];



4. THE PATTERN ASSOCIATOR 101

trial();

if (lflag) change_weights();
}

if (~ss < ecrit)
return;

The trial routine runs each individual trial. .It calls four other routines:
one that sets the input and the target patterns, one that computes the
activations of the output units from the activations of the input units, one
that computes the error measure, and one that computes the various sum­
mary statistics:

trial ()

setup_pattern();
compute_output();
compute_error();
sumstats();

Below we show the compute_output and the compute_error routines. First,
compute_output:

compute_output()

for (i = ninputs; i < nunits; i++) {

/* accumulate net input to each output unit */
netinput[i] = bias[i];
for (j = 0; j < ninputs; j++) {

netinput[i] += activation[j]*weight[i] [j];

/* set activation based on net input */
if (linear) {

activation[i] = netinput[i];
}

else if (It) {
if (netinput[i]

activation[i]
else

activation[i]
}

else if (cs) {
activation[i]

> 0)
1. 0;

0.0;

logistic(netinput[i]);



102 IMPLEMENT ATION

else { /* default, stochastic mode */
activation[i] =

probability(logistic(netinput[i]));

The choice of activation function is indicated by the values of mode vari­
ables called linear, It, and cs. The variable It stands for linear threshold, and
cs stands for continuous sigmoid. The default case, in which the output is
stochastic, involves a call to the logistic function shown in Chapter 3. This
function returns a number between 0 and 1. The result is then used to set
the activation of the unit to 0 or 1 based on the probability function, which
returns a 1 with probability equal to its argument.

The compute_error function is exceptionally simple for the pa program:

compute_error() {

/* use i for output units, t for target elements */
for (i = ninputs, t = 0; i < nunits; t++, i++) {

error[i] = target[t] - activation[i];

Note that when the targets and the activations of the output units are both
specified in terms of Os and Is, the error will be 0, 1,or -1.

I[ learning is enabled (as it is by default in the program, as indicated by
the value of the ljIag variable), the train command calls the change_weights
routine, which actually carries out the learning:

change_weights ()

if (hebb) {

for (i = ninput~; i < nunits; i++)
for (j = 0; j < ninputs; j++) {

weight[i][j] +=
epsilon [i] [j]*target [i]*activation [j];

}
bias[i] += bepsilon[i]*target[i];

else { /* delta rule, by default */
for (i = ninputs; i < nunits; i++)

for (j = 0; j < ninputs; j++) {
weight[i] [j] +=

epsilon[i] [j]*error[i] *activation[j];



4. THE PATTERN ASSOCIATOR 103

bias[i] += bepsilon[i]*error[i];

The matrix epsilon!iJOJ contains modifiability parameters for each connec­
tion in the network. Generally, modifiable connections are set to a value
equal to the parameter Irate; unmodifiable connections are set to O. Simi­
larly, the array bepsilonfiJ has modifiability para'meters for the bias terms for
each output unit.

Note that for Hebbian learning, we use the target pattern directly in the
learning rule, since this is mathematically equivalent to clamping the activa­
tions of the output units to equal the target pattern and then using these
activations.

RUNNING THE PROGRAM

The pa program is used much like the other programs we have described
in earlier chapters. The main things that are new for this program are the
strain and ptrain commands for training pattern associator networks.

There are also changes to the test command, and there is a new com­
mand called tall. The test command allows you to test the network's
response to a particular input pattern, either one in the program's list of
pattern pairs or one entered directly from the keyboard; tall allows you to
test the network's response to all of the patterns in the list of pattern pairs
with learning turned off so as not to change the weights while testing. As in
the cs program, commands newstart and reset are both available as alterna­
tive methods for reinitializing the programs. Recall that reset reinitializes
the random number generator with the same seed used the last time the
program was initialized, whereas newstart seeds the random number genera­
tor with a new random seed. Although there can be some randomness in
pa, the problem of local minima does not arise and different random
sequences will generally produce qualitatively similar results, so there is lit­
tle reason to use reset as opposed to newstart. There are several mode vari­
ables in pa: linear, It (for linear threshold), and cs (for continuous sigmoid)
that determine the activation rule that is in force. The default is stochastic,
which is used when linear, It, and cs are all O. Another mode variable,
hebb, determines whether the learning rule is the Hebb rule (hebb= J) or
the delta rule (which is the default). The new control variables include
nepochs, the number of training epochs run when the strain and ptrain com­
mands are entered, and ecrit, the criterion value for the error measure. The
/j/ag variable allows direct control over whether learning is on, and the step­
size variable now has two new values, which are pattern and epoch. When
stepsize is set to pattern, the screen is updated after each pattern is processed

.,"



104 RUNNING THE PROGRAM

(Le., at the end of each trial). When set to epoch, the screen is updated
after each epoch of processing.

There are only three parameters in pa. Most important is Irate, which is
equivalent to the parameter E from the "Background" section. The other
two parameters are noise, which determines the amount of random variabil­
ity added to elements of input and target patterns, and temp, used as the
denominator of the logistic function to scale net inputs in cs and the default
stochastic mode. There are also several new performance measures: the
normalized dot product, ndp; the normalized vector length measure, nvl;
the vector correlation measure, vcor; the pattern sum of squares, pss; and
the total sum of squares, tss.

New or Altered Commands

Here follows a more detailed description of the new or altered commands
available in pa.

newstart

Seeds the random number with a new random seed, and then
returns the program to its initial state before any learning occurred.
That is, sets all weights to 0, and sets nepochs to O. Also clears
activations and updates the display.

ptrain

Permuted training command. Runs nepochs training epochs,
presenting each pattern pair in the pattern list once in each epoch.
Order of patterns is rerandomized for each epoch. Returns early if
interrupted or if tss is less than ecrit. (During training, individual
elements of each input and target pattern may be randomly dis­
torted by the model by adding random noise, if desired. See the
entry for the noise parameter in the variable list.)

reset

Same as newstart, but reseeds the random number generator with
the same seed that was used last time the network was initialized.

strain

Sequential training command. Same as ptrain, except that pattern
pairs are presented in the same, fixed order in each epoch. The
order is simply the order in which the pattern pairs are encountered
in the list.

tall

Temporarily turns learning off and tests all patterns in sequential
order. Temporarily sets single to 1 and sets stepsize to pattern so
that the program updates the screen and pauses after each pattern is
tested.



4. THE PATTERN ASSOCIATOR 105

test
Allows testing of the response to an individually specified input pat­
tern against an individually specified target. Prompts first for the
input pattern, then for the target. Prompt for input is

input (#N, ?N, E for enter):

If the user types

#N Tests with the Nth input pattern on the list (N is an
integer).

#name Tests with the pattern named name (name is a character
string) .

?N Tests with a distorted version of pattern N. The pattern is
distorted by adding uniformly distributed noise to the
stored pattern with range as specified by the value of the
noise parameter.

?name Tests with a distorted version of pattern name.
E Prompts for a specific pattern to test. The pattern consists

of a sequence of floating-point numbers or "+", "-", and
" ." characters indicating entries for the pattern. Entries
must be separated by spaces or return and followed by an
extra return or end.

The prompt for the target is analogous; the user can specify a par­
ticular target to use in the same way the input pattern is specified.
In this case, #0 indicates target pattern O.

get / patterns
Prompts for a file containing a set of pattern pairs. Each pair con­
sists of an input pattern (called ipattern) and a target pattern (called
tpattern). Each specification begins with a name, followed by nin­
puts entries specifying the elements of the input pattern and nout­
puts entries specifying the elements of the corresponding target.
Entries may be floating-point numbers or" +" (stands for 1.0), "-"
(stands for -1.0) or "." (stands for 0.0). Pattern pairs are num­
bered internally by the program in the order encountered starting
from o.

Variables

All of the new or altered variables used in the pa program are given in
the following list. They are all accessible using the set and exam com­
mands.



106 RUNNING THE PROGRAM

ecrit

Error criterion for stopping training. If the tss at the end of an
epoch of training is less than ecrit, training stops.

ljlag
Learning flag; normally set to 1. When nonzero, learning is
enabled. Learning is automatically disabled during the tall or test
commands.

nepochs
Number of training epochs run by each· call to the strain and ptrain
commands.

stepsize

Step size for updating the screen arid for pausing if single is set to 1
during strain and ptrain. Values allowed are cycle, pattern, epoch, and
nepochs. If the value is cycle, the screen is updated after processing
each pattern and then updated again (if ljlag is set to 1) after the
weights are changed. If the value is pattern, the screen is only
updated after the weights are changed. If the value is epoch, the
screen is updated at the end of each epoch; if the value is nepochs,
the screen is updated only when the strain and ptrain commands
return.

config/ ninputs
Number of input units. This is crucial both for defining the net­
work and for reading in pattern pairs.

config / noutputs
Number of output units. Also crucial for defining the network and
reading pattern pairs.

config/ nun its
Number of units; should equal the sum of ninputs plus noutputs.

env / ipattern

Input pattern array. Prompts for an input pattern number or name,
then for an element number, and then displays the value of the
specified element in the specified pattern.

env / npatterns
Number of input-target pattern pairs in the program's pattern list.
This variable is set implicitly in reading in the input patterns.

env / pname

Pattern name vector. Prompts for a pattern number and gives its
name.

env / tpattern

Target pattern array; analogous to input pattern array. Prompts for
a target pattern number or name and then for an element number.
Element 0 is the first element of each target pattern.

mode / cs

Flag variable (standing for "continuous sigmoid"). When nonzero,
each output unit takes on an activation based on the logistic func­
tion of its net input.



4. THE PATTERN ASSOCIATOR 107

mode I hebb
Flag variable. When nonzero, the Hebb rule is used in updating
the weights~ otherwise, the delta rule is used.

mode I linear
Flag variable. When nonzero, a linear activation function is used to
set the activations of the output units on the basis of the input
units. If this and mode variables It and cs are 0, the default sto­
chastic activation function is used.

mode I It
Flag variable (standing for "linear threshold"). When nonzero,
each output unit takes on an activation based on the linear thresh­
old function so that its activation is set to 1 if its input is greater
than O~otherwise, its activation is set to O.

paraml Irate
The learning rate parameter. Scales the size of the changes made to
the weights. Generally, if there are n input units, the learning rate
should be less than or equal to IIn .

paraml noise
Range of the random distortion added to each input and target pat­
tern specification value during training and testing. The value
added is uniformly distributed in the interval [-noise, + noise J. See
the strain, ptrain, and test commands.

paraml temp
Denominator used in the logistic function to scale net inputs in
both cs (continuous sigmoid) and default (stochastic) modes. Gen­
erally, temp can be set to 1, except in the simulations of the rule of
78 (see Ex. 4.4). Note that there is only one cycle of processing in
pa, so there is no annealing.

statel cpname
Name of the current pattern, as given in the pattern file.

state I epochno
Number of the current epoch; updated at the beginning of each
epoch.

state I error
Vector of errors, or differences between the current target pattern
and the current pattern of activation over the output units.

state I input
Vector of activations of the input units in the network, based on
the current input pattern (subject to the effects of noise).

statel ndp
Normalized dot product of the obtained activation vector over the
output units and the target vector.

statel netinput
Vector of net inputs to each output unit.



108 EXERCISES

state/ nvl
Normalized length of the obtained activation vector over the output
units.

state/ output"
Vector of activations of output units in the network.

state/ patno
The number of the current pattern, updated at the beginning of
processing the pattern. Note that this is the index of the pattern on
the program's pattern list; when ptrain is used, it is not the same as
the pattern's position within the random training sequence in force
for a particular epoch.

state/ pss
Pattern sum of squares, equal to the sum over all output units of
the squared difference between the target for each unit and the
obtained activation of the unit.

state / target
Vector of target values for output units, based on the current target
pattern, subject to effects of noise.

state / tss
Total sum of squares, equal to the sum of all patterns so far
presented during the current epoch of the pattern sum of squares.

state / veor

Vector correlation of the obtained activation vector over the output
units and the target vector.

OVERVIEW OF EXERCISES

In these exercises, we will study several basic properties of pattern associ­
ator networks, starting with their tendency to generalize what they have
learned to do with one input pattern to other similar patterns; we will
explore the role of similarity and the learning of responses to unseen proto­
types. These first studies will be done using a completely linear Hebbian
pattern associator. Then, we will shift to the linear delta rule associator of
the kind studied by Kohonen (1977) and analyzed in PDP:ll. We will
study what these models can and cannot learn and how they can be used to
learn to get the best estimate of the correct output pattern, given noisy
input and outputs. Finally, we will examine the acquisition of a rule and an
exception to the rule in a nonlinear (stochastic) pattern associator.

Ex. 4.1. Generalization and Similarity With Hebbian Learning

In this exercise, you will train a linear Hebbian pattern associator on a
single input-output pattern pair, and study how its output, after training, is



4. THE PATTERN ASSOCIATOR 109

affected by the similarity of the input pattern used at test to the input pat­
tern used during training.

After you.have created a working directory for the pa program and all of
the associated files, you can start up this exercise by entering the command:

po 8x8.tem lin.str

The files 8x8.tem and lin.str set up the network to be a linear Hebbian pat­
tern associator with eight input units and eight output units, starting with
initial weights that are all O. The .str file sets the value of the learning rate
parameter to 0.125, which is equal to 1 divided by the number of units.
With this value, the Hebb rule will learn an association between a single
input pattern consisting of all + Is and -Is and any desired output pattern
perfectly in one trial.

The file one.pat contains a single pattern (or, more exactly, a single
input-output pattern pair) to use for training the associator. Both the input
pattern and the output pattern are eight-element vectors of + Is and -} s.
Load this pattern file:

get pat one.pat

When it is loaded, the single input and target pattern will appear in the
upper right corner of the display area.

Now you can train the network on this first pattern pair for one epoch.
The nepochs variable has been set to 1 in the lin.str file, but before you start
it might be best to set single to I so that you can watch things progress:

set single 1

Now, you can train the network by simply entering

strain

Because stepsize is set to cycle in the .str file, the program will present the
first (and, in this case, only) input pattern, compute the output based on
the current weights, and then display the input, output, and target patterns,
as well as some summary statistics. If you have set single to 1, it will pause,
with the display shown in Figure 4. At the top of the display you will see
the p to push /b to break / <cr > to continue: prompt, under which is the
top-level menu. Below this is the display area. In the upper left corner of
the display area, you will see some summary information, including the
current epochno (which is 1, indicating the first epoch of training; note that
epochno changes at the beginning of each epoch and stays the same until
the next epoch begins) and the current patno (which is 0, indicating that
pattern 0 is being processed). Below these entries are the ndp, or normal­
ized dot product, of the output obtained by the network with the target pat­
tern; the nvl, or normalized vector length, of the obtained output pattern;



110 EXERCISES

P to push/b to bre",}J<cr) t.o continue: •
disp/ exam/ get/ savel setl clear do log newstart ptrain quit reset
run strain tall test

epochn 1 pm.'Jneipatterntpattern
cpna.JI\e

a a1!!1!!1!!1!!llD!!llD!!
ndp

0.0000
n·..•1

0.0000
'cor

0.0000
ss

8.0000
tss

8.0000 outt.ar

'Jeights

00000000 0100
0

0000000 I)100
0

0000000 0II0
0000000 0"

0
0000000 0100

0
0000000 0100

0
0000000 0II0
000I)000 0"

input

lo0DWW100DWW100DWW100DWW

FIGURE 4. Display layout for the first pa exercise while processing pattern a, before any
learning has occurred.

and the vcor, or vector correlation, of the output with the target. All of
these numbers are 0 because the weights are 0, so the input produces no
output at all. Below these numbers are the pss, or pattern sum of squares,
and the tss, or total sum of squares. They are the sum of squared differ­
ences between the target and the actual output patterns. The first is
summed over all output units for the current pattern, and the second is
summed over all patterns so far encountered within this epoch (they are,
therefore, identical at this point).

Below these entries you will see the weight matrix on the left, with the
input vector that was presented for processing below it and the output and
target vectors to the right.

The display presents all of the network variables (inputs, weights, activa­
tions, etc.) in hundredths, and reverse video means negative, so that 1.0
displays as 100 and - 1.0 displays as 100 in reverse video. The ipattern and
tpattern arrays (upper right corner of the display area) show only one digit
per pattern element because they are always +1 and -1 in this exercise.
You will see that the input pattern shown below the weights matches the
single input pattern shown under the label ipattern and that the target pat­
tern shown to the right of the weights matches the single target pattern
shown under tpattern. The output itself is all Os.

If you enter return at this point, the target will first be clamped onto the
output units, then the weights will be updated according to the Hebbian
learning rule:

Llw = (trate)o·iIJ I )"

Enter return one more time to return from the first epoch of training.

(25)



4. THE PATIERN ASSOCIA TOR 111

Q.4.1.1. Explain the values of the weights in rows 1 and 2 (counting from
0). Note that the display does not indicate the third decimal
place, which in this case is a 5; each weight has absolute value
0.125 at this point. Explain the values of the weights in column
7, the last column of the matrix.

Now, with just this one trial of learning, the network will have
"mastered" this particular association, so that if you test it at this point, you
will find that, given the learned input, it perfectly reproduces the target.
You can test the network using the test command. Simply enter test, and
respond to the prompts. The first prompt. asks you to specify an input pat­
tern. Your choices are #N, ?N, and E, where N stands for the numerical
index of a pattern. If you enter #0, for example, the model will set the
input to be ipattern O. The ?N option is used to specify a distortion of a
particular pattern (we will consider this again in a moment); the E option
allows you to enter a specific pattern of your own choosing. For your first
test, enter #0 for the input. Do the same for the target. The display will
now show the actual output computed by the network.

In this particular case the display will not change much because in the
previous display the output had been clamped to reflect the very target pat­
tern that the network has now computed. The only thing that actually
changes in the display are the ndp, vcor, and nv/ fields; these will now
reflect the normalized dot product and correlation of the computed output
with the target and the normalized length of the output. They should all be
equal to 1.0 at this point.

You are now ready to test the generalization performance of the network.
To do this, you can enter specific input patterns of your own, instead of
#0, for the input pattern requested by the test routine. The following
exchange indicates the inputting of the pattern +-+-++++, followed by a
specification that the" target" is still tpattern 0:

pa: test
input (#N, ?N, E for enter): E
give input elements: + - + - + + + + end
target (#N, ?N, E for enter): #0

Note that the elements of the input pattern must be separated by spaces.
After this interchange, the network will test the specified input pattern,
report the output and the target, and indicate the ndp, vcor, and nv/ of the
obtained output with the input.

QA.1.2. Try a number of different input patterns, testing each against the
#0 target. Observe the ndp, vcor, and nv/ in each case. Relate the
obtained output to the specifics of the weights and the input pat­
terns used and to the discussion in the "Background" section
about the test output we should get from a linear Hebbian



112 EXERCISES

associator, as a function of the normalized dot product of the
input vector used at test and the input vector used during train­
ing. Include in your set of patterns one that is orthogonal to the
training pattern and one that is perfectly anticorrelated with it, as
well as one or two others with positive normalized dot products
with the input pattern.

If you understand the results you have obtained in this exercise, you
understand the basis of similarity-based generalization in one-layer associa­
tive networks. In the process, you should come to develop your intuitions
about vector similarity and to clearly be able to distinguish uncorrelated pat­
terns from anticorrelated ones.

Ex. 4.2. Orthogonality, Linear Independence, and Learning

This exercise will expose you to the limitation of a Hebbian learning
scheme and show how this limitation can be overcome using the delta rule.
For this exercise, you are to set up two different sets of training patterns:
one in which all the input patterns form an orthogonal set and the other in
which they form a linearly independent, but not orthogonal, set. For both
cases, choose the output patterns so that they form an orthogonal set, then
arbitrarily assign one of these output patterns to go with each input pattern.
In both cases, use only three pattern pairs and make sure that both patterns
in each pair are eight elements long. The pattern files you construct in
each case should contain three lines formatted like the single line in the
one.pat file:

first + - + - + - + - + + - - + + - -

We provide sets of patterns that meet these conditions in the two files
ortho.pat and Ii.pat. You may use these files if you wish, but you will be
more certain of your understanding if you construct your own sets of pat­
terns and make sure that they can be learned.

Q.4.2.1. For each set of patterns, do the following experiment. Read the
patterns into the program using the get/ patterns command. Reset
the network (this clears the weights to Os). Then run one epoch
of training using the Hebbian learning rule by entering the strain
command. Following this, execute the tall command to test the
model's performance. What happens with each pattern? Run
three additional epochs of training (one at a time), following each
with a tall. What happens? In what ways do things get better?
In what ways do they stay the same? Why?



4. THE PATTERN ASSOCIA TOR 113

Q.4.2.2. Turn off hebb mode in the program (this puts the default, the
delta rule, in place) and try the above experiment again. Describe
the similarities and differences between the results and explain in
terms of the differential characteristics of the Hebbian and delta
rule learning schemes.

Q.4.2.3. With the linearly independent set of patterns, keep running train­
ing epochs using the delta rule until the tss measure drops below
0.05. Examine and explain the resulting weight matrix, contrast­
ing it with the weight matrix obtained after one cycle of Hebbian
learning with the same patterns. What are the similarities
between the two matrices? What are the differences? Try to
explain rather than just describe the differences.

For the next question, reinitialize your network and train the network
with the pattern set in the file Ii.pat. (It makes no difference whether you
use reset or newstart to reinitialize since randomness plays no role in this
exercise.) Run one epoch of training at a time, and examine performance
at the end of each epoch using the tall command.

Q.4.2.4. In Ii.pat; one of the input patterns is orthogonal to both of the
others, which are partially correlated with each other. Which
input-output pair is mastered first? Why?

Q.4.2.5. As the final exercise in this set, construct sets of two or more pat­
tern pairs that cannot be effectively mastered, either by Hebbian
or delta rule learning. Explain why they cannot be learned, and
describe what happens when the network tries to learn them, both
in terms of the course of learning and in terms of the weights that
result.

Hints. We provide a set of impossible pattern pairs in the file imposs.pat,
but it is preferable for you to try to construct your own. You will
probably want to use a small value of the learning rate; this
affects the size of the oscillations that you will probably observe
in the weights. A learning rate of about 0.0125 is probably good.
Keep running more training epochs until the tss at the end of each
epoch stabilizes.

Ex. 4.3. Learning Central Tendencies

One of the positive features of associator models is their ability to filter
out noise in their environments. In this exercise we invite you to explore
this aspect of pattern associator networks. For this exercise, you will still



114 EXERCISES

be using linear units but with the delta rule and with a relatively small
learning rate. You will also be introducing noise into your training patterns.

A start-up file that sets things up nicely for this exercise is provided,
called ct.str Cctis for "central tendency"). This file sets the learning rate to
0.0125 and makes sure hebb mode is off. It also sets the noise variable to
0.5. This means that each element in each input pattern and in each target
pattern will have its activation distorted by a random amount uniformly dis­
tributed between +0.5 and -0.5.

Start up the program with the command

pa 8x8.tem ct.str

Then load in a set of patterns (your orthogonal set from Ex. 4.2 or the pat­
terns in ortho.pat). Then you can see how well the model can do at pulling
out the "signals" from the "noise." The clearest way to see this is by study­
ing the weights themselves and comparing them to the weights acquired
with the same patterns without noise added.

QA.3.1. Compare learning of the three orthogonal patterns you used in
Ex. 4.2, without noise, to the learning that occurs in this exercise,
with noise added. Compare the weight matrix acquired after
"noiseless" learning with the matrix that evolves given the noisy
input-target pairs that occur in the current situation. Run about
60 epochs of training to get an impression of the evolution of the
weights through the course of training and compare the results to
what happens with errorless training patterns (and a higher learn­
ing rate). What effect does changing the learning rate have when
there is noise? Try higher and lowers values.

Hints. You may find it useful to rerun the relevant part of Ex. 4.2
(QA.2.2) and to use the savel screen command to store the
weight matrices you obtain in the different runs. For longer runs,
remember that you can set nepochs to a number larger than the
default value of 1. Each time strain is entered, nepochs of training
are run.

The results of this simulation are relevant to the theoretical analyses
described in PDP:ll and are very similar to those described under "central
tendency learning" in PDP:25, where the effects of amnesia (taken as a
reduction in connection strength) are considered.

Ex. 4.4. Lawful Behavior

We now turn to one of the principle characteristics of pattern associator
models that has made us take interest in them: their ability to pick up



4. THE PATTERN ASSOCIATOR 115

regularities in a set of input-output pattern pairs. The ability of pattern
associator models to do this is illustrated in the past-tense learning model,
discussed in PDP:18. Here we provide the opportunity to explore this
aspect of pattern associator models, using the example discussed in that
chapter, namely, the rule of 78 (see PDP:18, pp. 226-234). We briefly
review this example here.

The rule of 78 is a simple rule we invented for the sake of illustration.
The rule first defines a set of eight-element input patterns. In each input
pattern, one of units 1, 2, and 3 must be on; one of units 4, 5, and 6 must
be on; and one of units 7 and 8 must be on. For the sake of consistency
with PDP:18, we adopt the convention for this example only of numbering
units starting from 1. The rule of 78 also defines a mapping from input to
output patterns. For each input pattern, the output pattern that goes with it
is the same as the input pattern, except that if unit 7 is on in the input pat­
tern, unit 8 is on in the output and vice versa. Table 1 shows this rule.

The rule of 78 defines 18 input-output pattern pairs. Eighteen arbitrary
input-output pattern pairs would exceed the capacity of an eight-by-eight
pattern associator, but as we shall see, the patterns that exemplify the rule
of 78 can easily be learned by the network.

The version of the pattern associator used for this example follows the
assumptions we adopted in PDP:18 for the past-tense learning model.
Input units are binary and are set to 1 or 0 according to the input pattern.
The output units are binary, stochastic units and take on activation values
of 0 or 1 with probability given by the logistic function:

p (act; = 1) = -ne/;lT1 + e

TABLE I

THE RULE OF 78

(26)

Input patterns consist of one
active unit from each of the
following sets:

The output pattern paired with
a given input pattern consists
of:

Examples:

An exception:

(From PDP:18, p. 229.)

(J 2 3)
(456)
(78)

The same unit from (J 2 3)
The same unit from (4 5 6)
The other unit from (7 8)

247-248
168-167
357-358

147-147



116 EXERCISES

where T is equivalent to the temp parameter. Note that, although this func­
tion is the same as for the Boltzmann machine, the calculation of the out­
put is only done once, as in other versions of the pattern associator; there
is no annealing, so temp is just a scaling factor.

Learning occurs according to the delta rule, which in this case is
equivalent to the perceptron convergence procedure because the units are
binary. Thus, when an output unit should be on (target is 1) but is not
(activation is 0), an increment of size Irate is added to the weight coming
into that unit from each input unit that is on. When an output unit should
be off (target is 0) but is not (activation is 1), an increment of size Irate is
subtracted from the weight coming into that unit from each input unit that
IS on.

For this example, we follow PDP:18 and use temp of 15. This means that
the net input to a unit needs to be about 45 for it to come on with probabil­
ity .95. Thus, learning will be gradual, even with an Irate of 2.0, which is
what we use in these examples. Note, though, that you can speed things
up by using a larger value of the learning rate. (The simulations that you
will do here will not conform to the example in PDP:18 in all details, since
in that example an approximation to the logistic function was used. The
basic features of the results are the same, however.)

To run this example, you will need to start up the pa program with the
78.tem and 78.str files:

pa 78.tem 78.str

The 78.str file will read in the appropriate network specification file (in
8x8.net) and the 18 patterns that exemplify the rule of 78, then display
these on the screen to the right of the weight matrix. Since the units are
binary, there is only a single digit of precision for both the input, output,
and target units. Given the Irate of 2.0, the weights take on integer values
divisible by 2. Their actual values are displayed in the cells of the weight
matrix; they are not multiplied first by 100, as in the previous exercises.

You should now be ready to run the exercise. The variable nepochs is
initialized to 10, so if you enter one of the training commands, 10 epochs
of training will be run. We recommend using ptrain because it does not
result in a consistent bias in the weights favoring the patterns later in the
pattern list. The screen is updated once per pattern after the weights have
been adjusted, so you should see the weights and the input, output, and
target bits changing. The pss and tss (which in this case indicate the
number of incorrect output bits) will also be displayed once per pattern.

Q.4.4.l. At the end of the 10th epoch, the tss should be in the vicinity of
20, or about one error per pattern; this means that the model is
getting each output bit correct with a probability of about .9.
Given the values of the weights and the fact that temp is set to 15,
calculate the net input to the last output unit for the first two



4. THE PATIERN ASSOCIA TOR 117

input patterns, and (using Figure 7 of Chapter 3 or your calcula­
tor) calculate the approximate probability that this last output unit
will receive the correct activation in each of these two patterns.
The"probabilities should be in the upper .80s or low .90s.

At this point you should be able to see the solution to the rule of 78 pat­
terns emerging. Generally, there are large positive weights between input
units and corresponding output units, with unit 7 exciting unit 8 and unit 8
exciting unit 7. You'll also see rather large inhibitory weights from each
input unit to each other unit within the same subgroup (i.e., 1, 2, and 3; 4,
5, and 6; and 7 and 8). Run another 20 or so epochs, and a subtler pattern
will begin to emerge.

Q.4.4.2. Generally there will be slightly negative weights from input units
to output units in other subgroups. See if you can understand
why this happens. Note that this does not happen reliably for
weights coming into output units 7 and 8. Your explanation
should explain this too.

At this point, you have watched a simple POP network learn to behave
in accordance with a simple rule, using a simple, local learning scheme; that
is, it adjusts the strength of each connection in response to its errors on
each particular learning experience, and the result is a system that exhibits
lawful behavior in the sense that it conforms to the rule.

For the next part of the exercise, you can explore the way in which this
kind of pattern associator model captures the three-stage learning
phenomenon exhibited by young children learning the past tense in the
course of learning English as their first language. To briefly summarize this
phenomenon: Early on, children know only a few words in the past tense.
Many of these words happen to be exceptions, but at this point children
tend to get these words correct. Later in development, children begin to
use a much larger number of words in the past tense, and these are
predominantly regular. At this stage, they tend to overregularize excep­
tions. Gradually, over the course of many years, these exceptions become
less frequent, but adults have been known to say things like ringed or taked,
and lower-frequency exceptions tend to lose their exceptionality (i.e., to
become regularized) over time.

The 78 model can capture this pattern of results; it is interesting to see it
do this and understand how and why this happens. For this part of the
exercise, you will want to reset the weights, and read in the file hfpat,
which contains a exception pattern (J47"""" 147) and one regular pattern
(258"""" 257). If we imagine that the early experience of the child consists
mostly of exposure to high-frequency words, a large fraction of which are
irregular (8 of the 10 most frequent verbs are irregular), this approximates
the early experience the child might have with regular and irregular past­
tense forms. If you run 20 epochs of training using ptrain with these two



118 EXERCISES

patterns, you will see a set of weights that allows the model to set each out­
put bit correctly in each pattern about 85% of the time. At this point, you
can read in the file all.pat, which contains these two pattern pairs, plus all
of the other pairs that are consistent with the rule of 78. This file differs
from the 78.pat file only in that the input pattern 147 is associated with the
"exceptional" output pattern 147 instead of what would be the "regular"
corresponding pattern 148. Save the screen displaying the weights that
resulted from learning hf.pat. Then read in all.pat and run 10 more epochs.

Q.4.4.3. Given the weights that you see at this point, what is the network's
most probable response to 147? Can you explain why the net­
work has lost the ability to produce 147 as its response to this
input pattern? What has happened to the weights that were previ­
ously involved in producing 147 from 147?

One way to think about what has happened in learning the all.pat stimuli
is that the 17 regular patterns are driving the weights in one direction and
the single exception pattern is fighting a lonely battle to try to drive the
weights in a different direction, at least with respect to the activation of
units 7 and 8. Since eight of the input patterns have unit 7 on and "want"
output unit 8 to be on and unit 7 to be off and only one input pattern has
input unit 7 on and wants output unit 7 on and output unit 8 off, it is
hardly a fair fight.

If you run more epochs, though, you will find that the network eventu­
ally finds a compromise solution that satisfies all of the patterns.

Q.4.4.4. If you have the patience, run the model until it finds a set of
weights that gets each output unit correct about 90% of the time
for each input pattern (90% correct corresponds to a net input of
+30 or so for units that should be on and -30 for units that
should be off). Explain why it takes so long to get to this point.

Further Suggested Exercises

In the exercise just described, there was only one exception pattern, and
when vocabulary size increased, the ratio of regular to exception patterns
increased from 1: 1 to 17: 1. Pinker and Prince (I987) have shown that, in
fact, as vocabulary size increases, the ratio of regular to exception verbs
stays roughly constant at 1: 1. One interesting exercise is to set up an ana­
log of this situation. Start training the network with one regular and one
exception pattern, then increase the "vocabulary" by introducing new regu­
lar patterns and new exceptions. Note that each exception should be
idiosyncratic; if all the exceptions were consistent with each other, they
would simply exemplify a different rule. You might try an exercise of this



4. THE PATTERN ASSOCIA TOR 119

form, setting up your own correspondence rules, your own exceptions, and
your own regime for training.

You can also explore other variants of the pattern associator with other
kinds of learning problems. One thing you can do easily is see whether the
model can learn to associate each of the individuals from the Jets and
Sharks example in Chapter 2 with the appropriate gang (relying only on
their properties, not their names; the files jets. tern, jets.str, jets. net, and

jets. pat are available for this purpose). Also, you can play with the continu­
ous sigmoid (or logistic) activation function by setting the cs mode flag to 1
(for the rule of 78 example, it is best to use the 8x8.tem file since the
weights have real values and to cut Irate to about 0.12 and temp to 1.0 so
that the weights stay in range; remember weights and activations are
displayed as hundredths in this template).




